Treatment Of Waste Water By Using Nanosilica From Rice Straw

Su Su Aung¹, Myat Myat Thaw²

Abstract

Rice is the most important food crop of the developing world and the staple food of more than half of the world's population. Generally, rice is grown and planted twice a year where a lot of rice by-products have been produced after harvesting the matured paddy. Rice straw is one of turning waste products into the valuable resources and to manage the environmental issues. This research work deals with finding an appropriate treatment process to enhance the utilization of rice by-products as precursors for producing efficient nanosilica. Novel nanosilica was synthesized from rice straw by sol-gel method. Physiochemical properties such as pH value, bulk density and moisture content of synthesized nanosilica were measured by AOAC method. The extracted nanosilica was characterized by EDXRF, SEM, XRD and FTIR spectroscopy. And then, the adsorptive properties of nanosilica was applied to reduce the turbidity of water sample due to effect of dosage and effect of contact time. Their efficiency, limitations, and advantages were compared and discussed.

Keywords - nanosilica, sol-gel method, turbidity, rice straw, physiochemical properties

Introduction

Nowadays, nanomaterials have also provided a promising approach to removing heavy metals from wastewater. In general, nanosilica are materials whose external dimensions are in the nanoscale (usually 1-100 nm) or nanoscale internal surface. These properties contribute to their extraordinary adsorption capacity and reactivity, both of which are favorable for the removal of heavy metal ions. So far, tremendous studies on nanosilica have been carried out to investigate their applications on heavy metal water treatment and they have exhibited great potential as a promising alternative to adsorbing heavy metals and turbidity from waste water (Cui and. Liu, et al., 2017). Rice straw and rice straw ash (RSA) are interesting sources of considerable levels of high quality silica, which has several applications. The production of nanosilica at industrial scale is based on mechanical, physical, chemical, and energy intensive thermal operations at high temperatures using large amounts of acids, generating significant volumes of effluents. Rice straw has exclusive nonporous silica layers. Silica is a basic raw material widely used in the semiconductors, ceramics, polymers, and materials industries and this silica is usually produced from quartz fused at high temperatures, which affords to obtain ultrapure polycrystalline silicon and silicon hydride (Egorova and Revina., 2000).¹

In addition to environmental and economic advantages, low-energy, simpler methods to obtain pure nanosilica create opportunities for the development of new industrial applications of removal of heavy metals from wastewater (Kamath and Proctor,1998). Various methods are used to produce larger amounts or pure or ultrapure nanosilica from rice straw Figure 1.

¹ Dr, Professor and Head , Department of Chemistry, Sagaing University of Education

²Dr, Rector, Sagaing University of Education

Botanical Description

Common name = Rice straw or paddy straw Botanical name = *Oryza sativa* L. Family name = Poaceae Myanmar name = Kaukyoe Plant part used = Stem

Figure: 1 Photograph of rice straw (Banmaw Township)

Materials and Methods

All chemicals and reagents used in this research were analytical and reagent grade obtain from Banmaw University. In all the investigations, the recommended and standard procedures of both conventional and modern techniques were employed. Instruments employed in this work consist of lab wares, glass wares and other supporting facilities. The experiments were carried out in the Laboratory of the Department of Chemistry, Banmaw University and the spectroscopic analyses were studied at the University Research Centre from University of Yangon, Magway University and Monywa University.

Preparation of Nanosilica from Rice Straw

Rice straw was collected from Shwekyina village, Banmaw Township, Kachin State. Silica nanoparticles production from agricultural waste (rice straw) were synthesized by sol-gel method (Le, 2017). The obtained rice straw was washed with distilled water to neutralize the pH in order to remove the sand, dust, light empty grains and fine dirt. Hence, the repeated washing of rice straw (RS) neutralizes the pH and removes the adhered impurities on the surface of silica. Rice straw (RS), an inexpensive waste material, was used to produce nanosilica. The silica was obtained by using sol-gel method, which involves extraction of silica using alkalis solution and gelation of the silica using acid solution. To evaluate the effect of purification parameter and to confirm the presence of silica, XRD analysis was carried out on silica nanoparticles for 2.5 M KOH treatments Figure 2. Moreover, the synthesized silica nanoparticles from rice straw were characterized by SEM, FTIR and XRD (Egorova and Revina., 2000).

Collection of Water Sample

The waste water sample was collected from Shwegu Township, Kachin State near agricultural side. Figure 3. Sample collection and testing of water qualities were continuously made within 24 hours.

Figure 3. Sampling sites for rice straw and waste water

Physicochemical Properties of Synthesize Nanosilica Determination of Bulk Density

The cylinder was filled with the ash up to 10 cm^3 and weighed. It was tapped gently until there is no more reducing in volume. The volume was recorded and the bulk density was calculated by the following equation (AOAC, 1990). (European Pharmacopeia, 2010).

Bulk density = $\frac{\text{weight of ash (g)}}{\text{final volume of ash(<math>cm^{\text{S}}$)}}

Determination of Moisture Content

Moisture content of nanosilica was determined by the oven method. Accurately weighed sample 1.0 g was added to porcelain basin and then heated for 1 hour in drying oven at 100 \pm 5 °C. After heating, the porcelain basin was removed from the oven and placed in desiccator for cooling and then weighing was repeated until a constant weight was obtained (AOAC, 1990).

Determination of pH

1.0 g of the nanosilica was placed in a beaker and then 100 mL of distilled water was added and stirred by magnetic stirrer for 30 minutes. The resulting solution was filtered and pH of the filtrate was measured by using pH meter.

Determination of Physicochemical Properties of Water Sample

The physicochemical parameters of collected water sample were investigated within 1hour . The turbidity of water was determined by turbidity meter water testing in Figure 4. The results were shown in Table 4.

Treatment of Water Sample with Synthesize Nanosilica Effect of dosage on turbidity of waste water sample

Accurately weighed of nanosilica sample varying from 0.01 g to 0.05 g were thoroughly mixed with 50 mL of waste water sample. Then they were shaken on electric shaker for 1 h with 150 rpm of rotation speed. After shaking, the water sample were filtered. The turbidity of water was determined by turbidity meter water testing. The result was shown in Table 5 and Figure 4.

Figure 4. Instruments used for water quality

Effect of contact time on turbidity of waste water sample

In the contact time experiment 0.01g nanosilica of known particle size were brought into contact with a fixed volume of (50 mL) water sample. Then they were shaken on electric shaker for (10 min to 60 min) with 150 rpm of rotation speed. After shaking, the water sample were filtered. The contact time measurements were made at ambient temperature. The turbidity of water was determined by turbidity meter and water testing. The result was shown in Table 6 and Figure 5 (a)(b).

Figure 5 (a) Water sample before treated with synthesize nanosilica (b) Water sample after treated with synthesize nanosilica

Results and Discussion Physicochemical Properties of Nanosilica

The bulk density, moisture and pH of synthesized nanosilica was shown in Table 1. It was shown that the bulk density and pH value of nanosilica are 0.6 gcm³ and 9.1. The higher the bulk density of the nanosilica, the more porosity on the surface of nanosilica can exist. The moisture % of nanosilica is absolutely zero. According to the experimental result, it can be found that the synthesized nanosilica has adsorptive nature to be used as an adsorbent for colour removal (WHO, 2008).

Table 1. Physicochemical Properties of Nanosilica

No	Parameters	Value
1	Moisture (%)	0.001
2	Bulk density (gcm ⁻³)	0.602
3	pH	9.101

Characterization of Silica Nanoparticles from Rice Straw Ash

EDXRF analysis

Sample Name RSA(BM) Meas. Data Comment with mylar film Group Operator URC. Chem. MVA Measurent Condition Channel Na-U Comment Channel KV Na-U Channel KV Concent Contract Collimator URC. Chem. MVA Concent Collimator O -40 O -	Sample Infe	ormation							
Meas. Date Comment Scoup 2020/03/05 14.46:01 with mylar film powder_oxide (air) Atmos. Measurement Condition Collimator 10mm Atmos. Channel KV 50 69-Auto Acq. Analysis Imme Atmos. Na-U 50 69-Auto Acq. Analysis Imme Atmos. Na-U 50 69-Auto Acq. Calc.Proc. Line Intensity Na-U 50 69-Auto I.10171 Quan-FP KK 18.5463 SiO2 94.015 % I.00261 Quan-FP KK 18.5463 SiO2 2.841 % I.00261 Quan-FP KK 18.5463 CaO 0.611 % I.00261 Quan-FP KK 13.5497 CaO 0.618 % I.0021 Quan-FP CaKa 7.5060 CaO 0.618 % I.0021 Quan-FP Cika 3.6467 CuO 0.015	Sample Nam	e RSA(BM	0						
Comment Group Operator With mylar film URC.Chem.MV/A Measurement Condition Channel Collimator 10mm Atmos. Channel K/V S0 69-Auto 0 - 40 Analysis 10mm Atmos. Channel K/V S0 69-Auto 0 - 40 Analysis 10mm Atmos. Channel K/V S0 69-Auto 0 - 40 Analysis 10mm Atmos. Classical Readin S1d Dev. Calc.Proc Line 60 D7% Si02 Pad.015 % IO.0261 Quan-FP KKa 18.5463 Si02 Pad.015 % IO.0261 Quan-FP KKa 18.5463 Si03 1.527 % IO.0261 Quan-FP KKa 18.5463 Caco 0.611 % IO.021 Quan-FP KKa 18.5463 Cico 0.652 % IO.0011 Quan-FP Cicka 7.5080 Crao 0.158 % <t< th=""><th>Meas Date</th><th>2020/03/</th><th>05 14:46:01</th><th></th><th></th><th></th><th>10000</th><th></th><th>1000</th></t<>	Meas Date	2020/03/	05 14:46:01				10000		1000
Group main Downder_oxide (air) Deprator URC.Chem.MWAA Measurement Condition Filter Acq. Collimator 10mm Atmos. Channel KV s0 69-Auto — 0-40.00 Live 60 DT% Analysis Time DT% Live 60 DT% DT% <th>Comment</th> <th>with myle</th> <th>ar film</th> <th></th> <th></th> <th></th> <th>129.2</th> <th>Allowed tool and</th> <th>N 1 100</th>	Comment	with myle	ar film				129.2	Allowed tool and	N 1 100
Operator URC.Chem.MWXA Measurement Condition Collimator 10mm Atmos. Channel kV uA Filter Acq. Analysis 10mm Atmos. Channel kV uA Filter Acq. Analysis 10mm Atmos. Quantitative Result Result Itol Dev. Calc.Proc. Line Intensity SIO2 94.011 % [1 017] Quan-FP SiKa 10.560 SIO2 94.011 % [1 0004] Quan-FP SiKa 10.5760 SO3 2.527 % [0.004] Quan-FP SiKa 10.5762 Gao 0.611 % [0.004] Quan-FP SiKa 15.7924 Gao 0.586 % [0.002] Quan-FP Caka 7.5060 Mno 0.1686 % [0.003] Quan-FP Caka 7.5060 Gao 0.0155 % [0.0001] Quan-FP Caka 7.434	Group	nowder	ovide (air)				100 C	COLUMN AND IN	
Operation Operation Operation Operation Operation Operation Atmos. Channel kV sub A Filter Acq. Analysis Time DT%. Na-U Std.Dev. Call.Proc. Live-60 Time DT%. Analysis Result Std.Dev. Calc.Proc. Live-60 Times Analyte Result Std.Dev. Calc.Proc. Live-60 Times Sto2 2.641 % [0.026] Quan-FP Kas 18.5463 Sto2 2.641 % [0.026] Quan-FP Kas 18.5463 Sto2 2.641 % [0.002] Quan-FP Kas 18.5463 Sto2 0.611 % [0.002] Quan-FP Kas 18.5463 Cr2O3 0.622 % [0.002] Quan-FP CrKa 47.9401 Sto2 0.062 % [0.003] Quan-FP CrKa 3.6467 Cr2O3	Operator	URC Ch					1000	ALC: NO.	
Measurement Condition Collimator 10mm Atmos. Channel kV uA Filter Acq. Analysis Time D7% Na-U 50 69-Auto 0 - 40 0.00-40.00 Live- 60 Time D7% Quantitative Result Std. Dev. Calc.Proc. Line Intensity Std2 94.015 % [1.017] Quan-FP SiKa 18.5463 Std2 2.641 % [1.017] Quan-FP SiKa 18.5463 Std2 2.641 % [1.017] Quan-FP SiKa 18.5463 Std2 2.641 % [1.009] Quan-FP SiKa 18.5463 CaO 0.611 % [0.004] Quan-FP Feka 90.4560 CaO 0.615 % [0.002] Quan-FP CaKa 7.5060 Mno 0.158 % [0.002] Quan-FP ZiKa 3.7711 CuO 0.0107 %<	operator	Unco					100000	The second second	
Channel KV UA Filter Acq. Analysis Time DT% 50 69-Auto 0-40 0.00-40.00 Live-60 Quantitative Result Analyte Result Std. Dev. Calc. Proc Line Intensity Std. Dev. Calc. Proc Line Intensity Std. 2 2.841 % [1.017] Quan-FP SiKa 18.5463 Ca20 2.841 % [1.028] Quan-FP KKa 18.5463 Ca20 0.6611 % [0.004] Quan-FP FeKa 10.4566 Ca00 0.6616 % [0.002] Quan-FP CaKa 7.5060 Ca00 0.166 % [0.002] Quan-FP CaKa 7.5060 Ca00 0.158 % [0.002] Quan-FP CaKa 3.8466 TiQ2 0.036 % [0.002] Quan-FP CaKa 3.8466 Std. 20.002] Quan-FP CaKa 18.54637 Std. 20.002] Quan-FP CaKa 10.57924 ZhO 0.158 % [0.002] Quan-FP CaKa 10.57924 ZhO 0.0158 % [0.001] Quan-FP CaKa 10.57924 Std. 20.000 Quan-FP CaKa 10.57924 Ca00 Quan-FP CaKa 10.57924 Quan-FP CaKa 10.5794 Quan-FP	Measureme	ent Cond	ition			Collimator	10mm	Atmos.	Air
Na-U 50 69-Auto 0 - 40 0.0040.00 Live- 60 Quantitative Result Intensity Result Intensity Intensity SIO2 94.015 % [1.017] Quan-FP SiKa 18.5463 SIO2 2.841 % [0.004] Quan-FP SiKa 18.5463 SIO2 2.841 % [0.004] Quan-FP SiKa 18.5463 Cao 0.611 % [0.004] Quan-FP SiKa 16.5497 Cao 0.618 % [0.002] Quan-FP Caka 7.5060 Cao 0.618 % [0.002] Quan-FP Caka 7.5060 Cao 0.618 % [0.002] Quan-FP Caka 7.6060 Mno 0.618 % [0.002] Quan-FP Caka 3.6467 Cuo 0.0165 % [0.000] Quan-FP Caka 5.4677 Cuo 0.0005 % [0.000] <td< td=""><td>Channel</td><td>kV</td><td>uА</td><td>Filter</td><td>Aca.</td><td>Analysis</td><td>Time</td><td>DT%</td><td></td></td<>	Channel	kV	uА	Filter	Aca.	Analysis	Time	DT%	
Quantitative Result Std.Dev. Calc.Proc Line Intensity Analyte Result [1.017] Quan-FP SiKa 18.5463 SIG2 2.841 % [1.017] Quan-FP SiKa 18.5463 K2O 2.841 % [1.017] Quan-FP SiKa 18.5463 CaO 2.641 % [1.0026] Quan-FP SiKa 18.5463 CaO 0.761 % [1.009] Quan-FP SiKa 28.690 CaO 0.611 % [1.0021] Quan-FP CaKa 75050 CaO 0.158 % [1.0002] Quan-FP Cika 47.9401 ZhO 0.158 % [1.0002] Quan-FP Cika 3.4865 TIG2 0.033 % [1.0002] Quan-FP Cika 3.4865 Rb20 0.005 % [1.0003] Quan-FP Rika 1.0639 Sid 0.0001 Quan-FP Aika	Na-U		50 69-Auto		0 - 40	0.00-40.00	Live- 60		30
Quantitative Result Std Dev. Calc. Proc. Line Intensity SiG2 98.01 5 % [10.026] Quan-FP Ka 19.055 SiG2 98.01 5 % [10.026] Quan-FP K Ka 19.056 SiG3 1.576 [0.026] Quan-FP K Ka 19.066 SiG3 0.750 % [0.009] Quan-FP K Ka 19.0456 Gao 0.611 % [0.009] Quan-FP CaKa 7.5060 Gao 0.611 % [0.009] Quan-FP CaKa 7.5060 MnO 0.168 % [0.002] Quan-FP CaKa 7.5060 MnO 0.168 % [0.002] Quan-FP CaKa 7.5060 MnO 0.168 % [0.002] Quan-FP CaKa 7.5060 Gao 0.003 % [0.003] Quan-FP CaKa 7.5460 Guo 0.005 % [0.0001] Quan									
Analyte Result Stol Dev. Calc.Proc Line Internation Stol Dev. Calc.Pr	Quantitativ	e Result							
SIC2 94.015 % [1.017] Quan-EPP SIKa 18.5463 2.641 % [0.004] Quan-EPP SIKa 18.5463 Fe203 10.750 % [0.004] Quan-EPP SiKa 10396 Fe203 10.750 % [0.004] Quan-EPP Cakka 7.5060 MnO 0.166 % [0.002] Quan-EPP Cakka 15.7924 Croos 0.0158 % [0.002] Quan-EPP Zika 47.9401 Croos 0.066 % [0.002] Quan-EPP Zika 3.7711 R020 0.016 % [0.001] Quan-EPP Cika 3.07711 R020 0.0015 % [0.000] Quan-EPP Cika 3.07711 R020 0.0005 % [0.000] Quan-EPP Sika 1.6030 SrO 0.0002 % [0.000] Quan-EPP Sika 5.4477 SrO 0.0002 % [0.000] Quan-EPP AgKa 1.6038 SrO 0.0002 % [0.000] Quan-EPP Sika 0.2476 Profile	Analyte	Result			Std.Dev.	Calc.Proc	Line	Intensity	
KEO 2.841 % [0.026] Quan-FP K Ka 20.850 SC3003 0.760 [0.004] Quan-FP S Ka 9.3760 Cao 0.761 % [0.002] Quan-FP S Ka 9.3760 Cao 0.761 % [0.002] Quan-FP Caka 9.5792 MnO 0.166 % [0.002] Quan-FP Caka 47.9401 ZnO 0.158 % [0.002] Quan-FP Crka 47.9401 Ci203 0.062 % [0.002] Quan-FP Crka 47.9401 Ci203 0.062 % [0.003] Quan-FP Crka 47.9401 Ci203 0.005 % [0.001] Quan-FP Crka 3.8466 Ci203 0.005 % [0.001] Quan-FP Crka 3.6677 Ag20 0.005 % [0.000] Quan-FP AgKa 1.0639 Y203 0.0005 % [0.	SiO2	94.015	%		[1.017]	Quan-FP	SIKa	18.5463	5
SO3 1.527 % [0.084] Quan-FP S Ka 1.3766 Fe20 0.0166 % [0.004] Quan-FP FeKa 90,4560 MnO 0.0166 % [0.002] Quan-FP ZnKa 47.9401 Gr203 0.062 % [0.001] Quan-FP ZnKa 47.9401 Gr203 0.062 % [0.002] Quan-FP TiKa 3.8466 FiG2 0.036 % [0.002] Quan-FP TiKa 3.8466 Sto 0.0007 % [0.000] Quan-FP RbKa 3.64771 Rb20 0.0005 % [0.000] Quan-FP AbKa 3.6467 Sr0 0.0002 % [0.000] Quan-FP AbKa 1.6388 Sr0 0.0002 % [0.000] Quan-FP SiKa 1.6388 Sr0 0.0002 % [0.000] Quan-FP AbKa 3.2477 Profile	K20	2.641	%		[0.026]	Quan-FP	KKa	20.6597	
Fe2O3 0.760 % [0.004] Quan-FP Cake 90.4580 MinO 0.166 % [0.009] Quan-FP Cake 17.5080 MinO 0.168 % [0.009] Quan-FP Cake 17.5080 Ci2O3 0.062 % [0.000] Quan-FP Cikka 147.9401 Ci2O3 0.062 % [0.001] Quan-FP Cikka 17.9401 Ci2O3 0.062 % [0.003] Quan-FP Cikka 3.8466 Ci2O3 0.030 % [0.003] Quan-FP Cikka 5.6678 CiDO 0.0165 [0.000] Quan-FP Cikka 5.4677 Rb2O 0.0007 % [0.000] Quan-FP Akie 5.4437 Y2O3 0.0000 % [0.000] Quan-FP Y Ka 0.2876 Profile I I I I I I I I I I I <td< td=""><td>SO3</td><td>1.527</td><td>%</td><td></td><td>[0.084]</td><td>Quan-FP</td><td>S Ka</td><td>1.3766</td><td></td></td<>	SO3	1.527	%		[0.084]	Quan-FP	S Ka	1.3766	
CaO 0.611 % [0.009] Quan-FP CaKa 7.5060 MnO 0.166 % [0.002] Quan-FP MnKa 15.7924 ZnO 0.0158 % [0.002] Quan-FP TKa 47.9401 Guan-FP TKa 3.7711 CuO 0.015 % [0.003] Quan-FP RKa 3.6678 Rb2O 0.005 % [0.000] Quan-FP RKa 3.6678 SnO 0.002 % [0.000] Quan-FP RKa 1.0988 SnO 0.0002 % [0.000] Quan-FP SKKa 1.0630 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000	Fe2O3	0.760	%		[0.004]	Quan-FP	FeKa	90.4580)
MnO 0.166 % [0.002] Quan-FP Zika 15.7924 Cr203 0.062 % [0.001] Quan-FP Zika 3.971 Cr203 0.062 % [0.002] Quan-FP Zika 3.971 Cr203 0.062 % [0.002] Quan-FP Zika 3.971 Cr203 0.062 % [0.001] Quan-FP Zika 3.971 Cr203 0.016 % [0.000] Quan-FP Zika 3.6678 Rb20 0.0007 % [0.000] Quan-FP Rika 5.4477 Sr0 0.0002 % [0.000] Quan-FP Sika 1.6038 Sr0 0.0002 % [0.000] Quan-FP Sika 1.6038 Sr0 0.0002 % [0.000] Quan-FP Sika 1.6038 Sr0 0.0002 % [0.000] Quan-FP Y Ka 0.2876 Profile Image: Sika <	CaO	0.611	%		[0.009]	Quan-FP	CaKa	7.5060	
ZnO 0.158 % [0.001] Quan-FP ZnKa 47.9401 Gr2Q3 0.062 % [0.002] Quan-FP CTKa 3.8486 10.003] Quan-FP CTKa 3.8486 10.003] Quan-FP CTKa 0.7711 Rezo 0.005 % [0.000] Quan-FP Rex 3.54477 Ag20 0.005 % [0.000] Quan-FP StKa 1.0888 StO 0.0002 % [0.000] Quan-FP StKa 1.0888 Y2C3 0.000 % [0.000] Quan-FP StKa 1.0830 Quan-FP StKa 1.0830 10.000] Quan-FP StKa 1.0830 Quan-FP StKa 1.0830 10.000] Quan-FP StKa 1.0830 10.000] Quan-FP StKa 1.0830 10.000] Quan-FP StKa 1.0830 10.000] Quan-FP StKa 1.0985 Sto 0.000 % [0.000] Quan-FP StKa 1.0985 YZC3 0.000 % [0.000] Quan-FP StKa 1.0985 10.000] Quan-FP StKa 1.000 10.000] Quan-FP StKa 1.0985 10.000] Quan-FP	MnO	0.166	%		[0.002]	Quan-FP	MnKa	15.7924	1
Cr2O3 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.062 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0	ZnO	0.158	%		[0.001]	Quan-FP	ZnKa	47.9401	
TiO2 0.030 % [0.003] Quan-FP Cika 0.7711 Rb2O 0.007 % [0.001] Quan-FP Cika 5.6678 Rb2O 0.007 % [0.000] Quan-FP Cika 5.4677 V203 0.000 % [0.000] Quan-FP Sika 5.4678 V203 0.000 % [0.000] Quan-FP Sika 1.6030 Quan-FP Sika 1.6030 Sika	Cr2O3	0.062	%		[0.002]	Quan-FP	CrKa	3.8466	
CuO Razo Agzo 0.005 SrO 0.0005 SrO 0.0005 SrO 0.0000 V2O3 0.0000 SrO 0.0000 V2O3 0.0000 SrO 0.0000 V2O3 0.0000 V2O3 0.0000 V2O3 0.0000 V2O3 0.0000 V2O3 0.0000 V2O3 0.0000 V2O3 0.0000 V2O3 0.0000 V2O3 0.0000 V2O3 0.0000 V2O3 0.0000 V2O3 0.0000 V2O3 0.0000 VXA VXA VXA VXA VXA VXA VXA VXA VXA VXA	TiO2	0.030	%		[0.003]	Quan-FP	TiKa	0.7711	
Rb20 0.007 SrO 0.002 SrO 0.002 SrO 0.0000 0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.00000 0.0000 0.0000 0.000	CuO	0.015	%		[0.001]	Quan-FP	CuKa	3.6678	
Ag20 Sr0 V203 0.000 V203 0.000 VKa 0.000 0.2876 VKa 0.2876 0.2876 0.2876 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Rb2O	0.007	%		[000.0]	Quan-FP	RbKa	5.4477	
SrO 0.002 % [0.000] Quan-FP SrKa 1.6030 0.2876 Profile [0.000] Quan-FP Y Ka 0.2876 [opskuh] Na-U [opskuh]	Ag2O	0.005	%		[0.001]	Quan-FP	AgKa	1.0988	
Y203 0.000 % [0.000] Quan-FP Y Ka 0.2876 Profile (openun) Na-U 15 5 7 7 7 7 7 7 7 7 7 7 7 7	SrO	0.002	%		[0.000]	Quan-FP	SrKa	1.6030	
Profile	Y2O3	0.000	%		[0.000]	Quan-FP	Y Ka	0.2876	
(cpaula) Na-U 10 5 10 5 10 10 10 10 10 10 10 10 10 10	Profile								
In the second se	Profile								
15 10 5 10 10 10 10 10 10 10 10 10 10	[cps/uA]	Na-U							
10 10 10 10 10 10 10 10 10 10	45							-	
10- 98 S F RA 5- F RA F RA F RA F RA F RA F RA F RA F RA	10		See .				af C	-	
10- 818 FRA RA R	1		LE .				Dent Or Ca	acm;	
5 - FRANCISCO - FR			1			//	3	1211	
5 - RAN REPORT OF A CONTRACT O						11 :	a his	*	
5 FRA REAL PARTY AND A LONG AND A	1					110	5	- A	
5 - FRANCISCO - FR	10-					1	* Date.	151	
5 STRA BALL AND STRA BALL							Pon	100	
5 REAL PROPERTY OF A REAL PROPER		-	1				wa t	Ja	
		×	15						
	-	9							
		20 20	92						
	5	- ×	300		3				
		al-	3 3 9	× ×	82				
		1222	A B	Pop	1 2 4	3 -			
- CME MUUL Mit		2 23	8131		Λ.Ξ	22			
		1 ALE		0					
	0	_uw	NUCUCE			~~~~~			
0 10 20 30			10		20		30		40000

Figure 6 Energy Dispersive X-ray Fluorescence (EDXRF) spectra of synthesize nanosilica

Mineral contents in extracted silica were measured by using Energy Dispersive X-ray Fluorescence (EDXRF) spectrometer at Department of Chemistry, Monywa University. According to the EDXRF results, the content of silica (98.871%) was observed in nanosilica and absent of toxic heavy metals (such as Hg, Pb, Cd and As). The result was shown in Table 2.

Oxide Forms	Relative Abundance (%) from Nanosilica
SiO ₂	98.871
K ₂ O	0.277
SO ₃	0.443
CaO	0.121
MnO	0.040
Fe ₂ O ₃	0.094
CuO	0.010
ZnO	0.119

Table 2Relative Abundance of Nanosilica from Rice Straw by EDXRF

SEM analysis

To extract the amorphous silica nanoparticles from rice straw the following procedure was utilized. First, the rice straw was washed with distilled water to remove any impurities that can contaminate the final silica product as well as washing can dissolute some soluble substances, including metal salts, allowing a preliminary chemical purification (Kamath and Proctor,1998). Second, the hydrothermal process at sub-critical water conditions was carried out at high-temperature, high-pressure, and acidic media with strong oxidation activities (using nitric acid). At those conditions the organic compounds can be decomposed, and the trace metals can be turned into soluble ions; then, silica can be obtained. The morphology of SiO₂-based nanoparticle is illustrated in Figure 7. As shown in the figure, the diameter of each nanoparticle NP ranges from 10 to 30 nm indicating that the NP is nanosized (Cui and. Liu, *et al.*, 2017).

Figure 7 . SEM image for synthesize nanosilica

FTIR analysis

Silica was synthesized from rice straw with extraction, were analyzed with FTIR and Figure 8 had shown the spectrum. Main peak at wave number 1073.15 cm⁻¹ was showed the typical for stretching vibration for –OH (Hydroxyl group).

Therefore, silica was used as sample, had hydroxyl group. It showed Si-OH bond or silanol. Although the vibration was not only silanol bond but also –OH from water which could not be ignored. Second peak at 791.56 cm⁻¹ showed silica group. It showed siloxane group Si-O-Si. Siloxane group were made sure with peak at 619.96 cm⁻¹ and deformation of Si-O bond for SiO4. Other peak with high intensity was shown at 465.67 cm⁻¹. It showed carbonyl vibrational stretch from hemicellulose. It might be dissolved when extraction process and adsorbed by silica also H-O-H bond and silinol to metal. The results are described in Table 3.

Figure 8. FTIR spectrum for nanosilica

Table 3. FT-IR spectral data of nanosilic

Frequency (cm ⁻¹)	Position assignment
1073.15	–OH (Hydroxyl group)
791.56	Si-O-Si bending (silanol)
619.96	deformation of Si-O
465.67	Si-O and metal

XRD analysis

XRD patterns of the obtained silica powder were recorded using a powder X-ray diffractometer (X' Pert Pro, PAN atypical, The Netherlands) with Cu-K (wavelength 1.5406 as a radiation source. The average crystallite size of the nanosilica powder was calculated from XRD pattern by using the Scherrer's equation:

where D p is the size of the particle, Λ the wavelength of X-ray, $\beta \frac{1}{2}$ the wavelength of full width half maximum and θ the peak position. The resulting pattern showed amorphous silica, with additional phase at $2\theta=31.46$ and 50.16. There was no phase that appeared at $2\theta=22$. Based on the table, main peak from the cristobalite diffractogram and quartz polymorphy appeared as companion phase

No	Parameters	Value
1	рН	7.6
2	EC(mS/cm)	0.82
3	TDS(g/L)	9.101
4	DO(ppm)	8.2
5	Salinity	0.4
6	Turbidity(NTU)	59.8

and polymorph tridimit did not appear (Liou and Yang, 2011). This result was similar with previous research. Standard nanosilica was shown in Figure 9. Table 4. Physicochemical Properties of Waste Water Sample

Effect of dosage on turbidity of waste water sample

In order to find out the minimum amount of nanosilica required for the removal of turbidity on waste water sample, the experiments of dosages were calculated. It was evident that for the quantitative removal of 0.01g of nanosilica in 50 mL was required. It was observed that by increasing the dose from 0.01 g to 0.03 g the removal efficiency increases and attain to constant. The results are described in Table 5.

 Table 5. Effect of dosage on turbidity of waste water sample

	1
Dosage (g) of nanosilica	Removal (%)
0.01	85.5
0.02	87.3
0.03	89.2
0.04	89.5
0.05	89.5

Effect of contact time on turbidity of waste water sample

The effect of contact time for the removal of turbidity on waste water sample (10 min to 60 min). The minimum dosage 0.01g was used to attain equilibrium. Table 6 show effect of contact time on the removal of turbidity on water sample. It was observed that, the percent of removal increases with time and attain the equilibrium at 40 min. After 40 min the removal percent become independent of contact time, the experiments of dosages were calculated.

Table 6. Effect of contact time on turbidity of waste water sample

Contact Time (min)	Removal (%)
10	30.4
20	52.2
30	75.1
40	85.5
50	85.5
60	85.5

Conclusion

Nanosilica has been extensively exploited to remove turbidity of waste water owing to their exceptional properties. Nanosilica was summarized in table at the end of this review. Nanosilica exhibit great advantages as adsorbents towards turbidity of waste water. Nevertheless, there are still some bottlenecks that needed to be overcome to make better use of these nanomaterials in waste water treatment. First, most nanosilica was unstable and tend to aggregate, thus reducing their removal capacity. The nanosilica seems to be a promising approach to solving these problems. Second, the commercial nanosilica used for heavy metals removal on an industry scales are rare and more efforts are needed to develop marketavailable nanomaterials. The synthesis, as well as operating costs of nanomaterials should be optimized for the sake of the economy and the production of these nanomaterials should meet the requirements of green chemistry. Last but not least, with the increasing use of nanomaterials in waste water treatment, their impacts and toxicities towards both the environment and human beings should be taken into consideration.

Acknowledgments

The author would like to express our gratitude to the Department of Higher Education, Ministry of Education, Myanmar, for their permission to do this research and also to Dr Myat Myat Thaw (Rector), Dr Khin Hynn Yee (Pro-Rector) and Dr Cho Kyi Than (Pro-Rector) Sagaing University of Education for allowing to read this paper. I would like to express my deepest gratitude to Dr Thar Htun Maung, Rector, Dagon University and Pro-rectors, Dagon University for their kind permission to summit this paper.

References

- AOAC., (1990). "Official Methods of Analysis". 15th Edn., Association of Official Analytical Chemistry, Washington, DC., USA., pp. 200-210.
- Cui. J., T.Liu, *et al.*, (2017). "Silica nanoparticles alleviate cadmium toxicity in rice straw: mechanisms and size effects". Environ Pollute, (2): pp. 52-78
- Egorova E.M, A. Revina., (2000). Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids Surf a Physicochem Eng.(1), pp. 68: 87-96.
- Kamath, S. and A. Proctor.,(1998) "Silica Gel from Rice Straw Ash: Preparation And Characterization," Cereal Chem, Vol. 7, pp. 484-493.
- Le V. H., T. C. N. Ha, T. H. Ha, (2017) "Synthesis of silica nanoparticles from Vietnamese rice husk by sol-gel method", *Nanoscale Res. Lett.* (8): pp. 38-47

Liou, T. H., & C. C. Yang, (2011) "Synthesis and Surface Characteristics of Nanosilica Produced from Alkali-extracted Rice Husk Ash," Material to cience and Engineering . (7): pp 521-529.

World Health Organization (WHO), (2008). Guidelines for Drinking Water Quality, Geneva, WHO.